
Optimization in

Noah Chang
Tao Wang Lab - Lab Meeting

June 28, 2024

Good practices

Basic Software Engineering Principles

Time Complexity?

Time Complexity?

Basic Software Engineering Principles

Time Complexity? O(n)

Time Complexity?

Basic Software Engineering Principles

Time Complexity? O(n)

Time Complexity? O(1)

Using hash map data structure can be faster than your usual data.frame

Vectorized Operation in R

Memory Re-allocation

Memory Re-allocation - Solution

Fast packages for optimizations

Data Manipulation package comparisons
Feature/Aspect Base data.frame dplyr data.table

Syntax Simplicity Traditional, less readable Intuitive, chainable verbs (%>%) Concise, uses DT[i, j, by] syntax

Performance Moderate
Moderate to High (depends on
backend) High

Data Manipulation Uses base R functions
Uses a suite of verbs (filter, select,
mutate, etc.)

Uses in-place updates with :=,
optimized for speed

Memory Efficiency Copies data frequently Copies data in some operations Modifies data by reference

Grouping and Aggregation Uses tapply, aggregate, by Uses group_by and summarise
Uses by argument and optimized
jexpression

Learning Curve Moderate
Easy (especially for those familiar
with SQL) Steeper than dplyr, but powerful

Handling Large Data Less efficient
More efficient with dplyr backends
like data.table or dtplyr Very efficient

Integration with Other Packages High (standard base R) High (tidyverseecosystem)
High, especially with data
manipulation packages like dplyr

Complex Operations Can be verbose and complex
Simplified with chaining and
functions

Highly efficient but requires
knowledge of syntax

Join Operations Uses merge Uses left_join, inner_join, etc.
Uses merge with optimized
performance

Data Manipulation package comparisons

Package comparisons - groupby

https://h2oai.github.io/db-benchmark/

https://h2oai.github.io/db-benchmark/

Package comparisons - join

https://h2oai.github.io/db-benchmark/

https://h2oai.github.io/db-benchmark/

Package comparisons - reading files

Package comparisons - writing files

Binding Rows - Speed comparison

https://rpubs.com/jimhester/rbind

https://rpubs.com/jimhester/rbind

C++ for optimizations

Rcpp

What is Rcpp?

Rcpp is an R package that facilitates the seamless integration of R and C++ code. It allows R users to
write high-performance C++ code and call it directly from R, thereby combining the ease of R with the
speed of C++.

Why Use Rcpp?

● Performance: C++ is significantly faster than R for many operations, especially those involving
loops or complex computations.

● Flexibility: C++ allows for more control over memory management and optimization.
● Integration: Rcpp provides a smooth interface between R and C++, making it easy to pass data

back and forth.

Rcpp - Usage 1: cppFunction()

Rcpp - Usage 2: sourceCpp()

Rcpp - Performance Comparison

https://bookdown.org/csgillespie/efficientR/performance.html

https://bookdown.org/csgillespie/efficientR/performance.html

RcppArmadillo

What is RcppArmadillo?

RcppArmadillo is an R package that provides a seamless interface between R and Armadillo, a
high-performance C++ linear algebra library. It combines the ease of Rcpp with the speed and flexibility of
Armadillo, making it ideal for tasks involving complex linear algebra computations.

Why Use RcppArmadillo?

● Performance: Armadillo offers highly optimized linear algebra routines that can outperform
equivalent R code.

● Ease of Use: Armadillo syntax is similar to MATLAB, making it easy to write and read.
● Integration: RcppArmadillo provides a smooth integration with R, allowing for efficient data transfer

between R and C++.

RcppArmadillo - usage

RcppArmadillo - Basic operations benchmark

RcppArmadillo - usage

RcppArmadillo - Complex operations benchmark

Parallel Computing

Future

OpenMP

RcppParallel

Parallel method comparisons

Feature future OpenMP RcppParallel

Ease of Use High Moderate Moderate

Backend Flexibility High (multicore, multisession, etc.) Low (shared-memory only) Low (shared-memory only)

Performance Moderate High High

Control Low (high-level abstraction) High (fine-grained control)
Moderate (high-level but
customizable)

Setup Complexity Low High Moderate

Required Knowledge Basic R C++ and OpenMP C++ TBB

Suitable For
High-level parallelism, distributed
computing

Fine-grained, thread-level
parallelism Parallelizing C++ code with Rcpp

RcppArmadillo Compatibility Not compatible
Requires BLAS compiling with
OpenMP support Compatible out of box

Further Considerations

Documenting and Commenting R Code for better maintenance and update:

● Descriptive names: Stop using foo bar temp df
● Document functions: Good practice to create a docstring for your functions in roxygen2 format for

future R package
● Create Sections and modularize: Putting your code into several contained sections and function

will be easier to maintain and troubleshoot

Evaluating Efficient R Code:

● Profiling Tools: Tools like profvis and Rprof can identify bottlenecks.
● Memory Management: data.table over data.frame, and garbage collection.

Thank you for listening

Questions, thoughts, or concerns?

